Representations of measurable sets in computable measure theory

نویسندگان

  • Klaus Weihrauch
  • Nazanin Tavana
چکیده

This article is a fundamental study in computable measure theory. We use the framework of TTE, the representation approach, where computability on an abstract set X is defined by representing its elements with concrete “names”, possibly countably infinite, over some alphabet Σ. As a basic computability structure we consider a computable measure on a computable σ-algebra. We introduce and compare w.r.t. reducibility several natural representations of measurable sets. They are admissible and generally form four different equivalence classes. We then compare our representations with those introduced by Y. Wu and D. Ding in 2005 and 2006 and claim that one of our representations is the most useful one for studying computability on measurable functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete Multi-Representations of Sets in a Computable Measure Space

In computable analysis, computability concepts depend critically on representations of computational objects. Different representations of a same set of objects can be compared under two kinds of reductions: continuous reductions ≤t and computable reductions ≤, which are string functions transform names under one naming system to names under another one. Most interesting are the complete (multi...

متن کامل

Elementary Computable Topology

We revise and extend the foundation of computable topology in the framework of Type-2 theory of effectivity, TTE, where continuity and computability on finite and infinite sequences of symbols are defined canonically and transferred to abstract sets by means of notations and representations. We start from a computable topological space, which is a T0-space with a notation of a base such that in...

متن کامل

Completeness results for metrized rings and lattices

The Boolean ring $B$ of measurable subsets of the unit interval, modulo sets of measure zero, has proper radical ideals (for example, ${0})$ that are closed under the natural metric, but has no prime ideal closed under that metric; hence closed radical ideals are not, in general, intersections of closed prime ideals. Moreover, $B$ is known to be complete in its metric. Togethe...

متن کامل

Closed Sets and Operators thereon: Representations, Computability and Complexity

The TTE approach to Computable Analysis is the study of so-called representations (encodings for continuous objects such as reals, functions, and sets) with respect to the notions of computability they induce. A rich variety of such representations had been devised over the past decades, particularly regarding closed subsets of Euclidean space plus subclasses thereof (like compact subsets). In ...

متن کامل

Algorithmic Randomness and Capacity of Closed Sets

We investigate the connection between measure, capacity and algorithmic randomness for the space of closed sets. For any computable measure m, a computable capacity T may be de ned by letting T (Q) be the measure of the family of closed sets K which have nonempty intersection with Q. We prove an e ective version of Choquet's capacity theorem by showing that every computable capacity may be obta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Logical Methods in Computer Science

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2014